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Abstract

Forestry inventory is a critical part of monitoring and servicing ecosystems and often involves statis-

tical estimation of quantities such as total wood volume. However, forestry data is often zero-inflated,

heavily skewed, and spatially dependent, making it difficult to model using traditional statistical and

geostatistical models. Two new techniques have been proposed to estimate spatially dependent data:

spatial Gaussian copula and spatial random forests. In this paper, we compare the predictive performance

of these new models along with traditional kriging on both simulated and resampled data.

1 Introduction

An important component of forest maintenance is regular inventory of forestry resources, such as total

timber volume, total biomass, etc. Since forests can cover enormous areas over rough terrain, it is often not

possible to sample certain areas of forests due to physical, budgetary, or time constraints. Spatial estimation

and interpolation is often employed to fill gaps in sampling and calculate estimations of relevant inventory

quantities. However, forestry data has several qualities that make it difficult to model.

Forestry data taken at sampled points or plots are likely to be correlated with data points that are close

by. This is what is popularly known as Tobler’s First Law: “Everything is related to everything else, but

near things are more related than distant things”[8]. This dependency structure precludes classical statistical

models like ordinary least squares regression since those techniques rely on the assumption of independent

and identially distributed data.

Furthermore, forestry data is often semicontinuous in that its distribution contains a point-mass at

value 0 and a positive skewed distribution[9]. This overdispersion often requires modeling using a mixture

distribution which combines two data generating processes: one which only generates zeros and another which

generates nonnegative, continuous values. Modelling using these mixure distributions has been explored
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thoroughly in non-spatial cases, but standard spatial prediction and interpolation tools such as those available

in ArcGIS Geoanalyst Toolbox1 do not have specialized methods to handle this semicontinuous data.

This creates need for a statistical model which can incorporate spatial dependence and model overdisper-

sion of zeros. In this paper, we give a brief overview of spatial random forests from the RFsp R package[1]

and the spatial Gaussian copula models[7] and compare their predictive performance in forestry applications

using both simulated and resampled data.

2 Data

The forestry inventory data used here was made available by the Forestry Inventory and Analysis program

of the USDA Forest Service, containing inventory information on 13 variables of interest across 1224 plots

of land in northwest Oregon.

Figure 1: Histograms of forestry inventory variables.

The response variables of interest include total

volume, total biomass, total number of trees, and

volume of specific tree species. Histograms of the

response variables indicate that the distributions are

positively skewed and zero inflated. Additionally, the

dataset includes fuzzed2 latitude, longitude, and el-

evation information. Possible covariate variables in-

clude annual precipitation, tc3 wetness index[10], an-

nual temperature, NDVI, and cover.

Simulated Data We create simulated datasets by

generating multivariate normal observations with the

sample correlation matrix from the original data. We

then backtransform using the quantile function of the zero-inflated gamma function that was found to fit

the original data. We simulated m = 1000 datasets of size n = 1224 for total timber volume and hemlock

volume, two common variables of interest in forestry inventory applications.

Due to the difficulty of simulating the covariates such that the original relationships between the covariates

and the responses were preserved, only the response variables were generated. Each simulated datasets is

randomly split into a training data and test set. The models will be trained solely on the geographic locations

and response values of the points in the training set.

1See ESRI documentation for more detail
2White noise is added to protect privacy of private landowners.
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Resampled Data We also generate training datasets by sampling rows without replacement from the

orignal data with the remaining rows serving as a test set. For models trained on these resampled datasets,

we will be able to use covariates present in the Oregon dataset in our models, such as annual average

temperature and precipitation. Since the focus of this study is not inference or exploration, we will focus on

covariates that are known from previous work[7] to be related to forestry inventory.

Figure 2: Alber’s Equal Area Conic projection used here.

Plotting the total timber volume alongside annual precipitation reasonably suggests that timber is as-

sociated with level of precipitation. Figure 3 is the semivariogram with the annual precipitation effect

incorporated, indicating that spatial autocorrelation effects are greatly reduced. This will be valuable in de-

termining model performance when spatial correlation effects are minimal and covariates are incorporated.

3 Methods

These simulations will compare the predictive performance of spatial Gaussian copula, spatial random forest,

and kriging in different scenarios and sample sizes.

3.1 Kriging

In geostatistics, kriging is a method of spatial interpolation where values at unobserved locations are es-

timated using a weighted sum of known values. In many regards, kriging is very similar in principle to

regression analysis. In particular, if the data is normally distributed and satisfies second order stationarity,

this is, if the covariances of points is a function only of the distance between the points and not the specific
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physical location of the points themselves, then kriging is the best linear unbiased estimator [3]. The weights

w obtained by kriging are unbiased and minimize estimation variance.

ẑ(x0) =

N∑
i=1

wiz(xi)

where x0 is the point to be predicted and z(xi) are the observed points.

If the response at point uα is defined as the function Z(uα), covariance between points is estimated using

the sample semivariogram which is defined for a lag distance h as

γ̂(h) =
1

2N(h)

N(h)∑
i=1

(Z(uα)− Z(uα + h))2

where N(h) is the number of pairs separated by distance h. An underlying theoretical population variogram

model is then fit to γ̂(h), such as the Gaussian variogram model:

γ(h) = c0 + c1

(
1− exp

(
−h
a

)2
)

where c0, c1, a are the nugget, sill, and range parameters respectively.[3] Using this theoretical variogram

function, we can calculate the covariance C(h) = σ2 − γ(h) for any lag distance h where σ2 is the sample

variance of all points. Kriging is often thought of as a two-step process where:

1. Spatial covariance is determined by fitting a theoretical variogram to the experimental variogram

2. Observation weights are calculated using this covariance structure and used to interpolate or predict

unobserved points

The original timber volume data was found to fit best with a Gaussian model, however, the Gaussian

model may not be the best fit for the training datasets we created, particularly in the resampling data study.3

Often times, a theoretical variogram model is fit to the experimental variogram using interactive tools such

as geoR::eyefit. For the purposes of this simulation study, we use the automap R package which employs

methods such as restricted maximum likelihood and Newton-Gauss curve fitting to select the best theoretical

model, fit the appropriate nugget, sill, and range parameters, and generate kriging predictions.

As an estimation approach, kriging makes use of distance between points as well as axes of spatial

continuity and redundancy of data points. Kriging therefore is a very popular technique among spatial

analysts since it incorporates a lot of information into the modelling process. However, kriging still has

underlying assumptions of a Gaussian process, potentially making it ill-suited for semicontinuous data.

3Several of our training datasets were found to fit best with an exponential or spherical variogram model.
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Figure 3: Note that there is almost no change
in semivariance as distance increases.

Ordinary and Universal Kriging A common point of con-

fusion for newcomers of geostatistics is that kriging can refer

to a variety of related spatial interpolation techniques with

different nomenclature. For consistency with the gstat and

automap packages, we will refer to the two kriging techniques

we use in this paper as ordinary kriging (OK) and universal

kriging (UK). Both techniques rely heavily on the process out-

lined above and therefore are very similar in principle.

Ordinary kriging is used for simulations that do not involve

any covariate. For the scope of this work, this means that or-

dinary kriging is used for studying our simulated datasets, but

not our resampled ones. More technically, OK assumes a constant unknown mean in the local neighborhood

of each estimation point.

This differs from universal kriging (referred to as regression kriging or kriging with external drift in other

sources) which assumes an overall smooth, nonstationary trend in the data which can be described as a

function of auxiliary predictors and a random residual which is estimated from residuals of the observed

points.[6] Universal kriging is used in simulations which involve using annual precipitation as a covariate.

3.2 Spatial Gaussian Copula

Copulas are multivariate cumulative distribution functions where each variable has a standard uniform

marginal distribution. Copulas were developed to describe dependency structures between random variables

and have been previously applied in areas such as microRNA[11] and box-office data[5]. An important copula

result is Sklar’s Theorem states that every n-dimensional multivarite cumulative distribution function G( ~X)

of a random vector ~X = (X1, . . . , Xn) can be expressed in terms of the marginal cumulative distribution

functions Fi(Xi) and a copula function C : [0, 1]n → [0, 1] such that

G( ~X) = C(F1(X1), . . . , Fn(Xn))

There are many possible choices for C, but a popular selection is the multivariate normal CDF ΦΣ where Σ

is the correlation matrix describing the relationship between the variables.

Madsen[7] proposed a spatial Gaussian copula

G(~V ,Σ) = ΦΣ(Φ−1(F1(v1)), . . . ,Φ−1(Fn(vn)))

5



where the correlation matrix Σ is chosen such that it represents the spatial relationships between each of

the data points. Differentiating the above copula yield the joint density function of the spatially dependent

data

g(~V ) = ‖Σ‖1/2exp

(
−1

2
zT (Σ−1 − In)z

) m∏
i=1

fi(yi)

where z = (Φ−1(F1(y1)), . . . ,Φ−1(Fn(yn))). This copula will be able to incorporate the spatial dependency

structure, however this method requires the appropriate selection of F and Σ.

A common choice for spatial correlation matrix Σ has i, jth entry equal to the value of the exponential

correlogram function

Σij(θ) =


θ0exp(−hijθ1) for i 6= j

1 when i = j

where hij is the distance between the locations yi and yj , 0 < θ0 ≤ 1 is the nugget parameter describing the

variation of the data at h = 0, and θ1 > 0 is the decay parameter. These parameters can be estimated from

the original data[7].

An appropriate F function would be one which can handle semicontinuous data. In this paper, we have

chosen to use a zero-inflated gamma (ZIG) function on cube-root transformed response data.

f(x) =


0 w.p p

1
Γ(α)βαx

α−1exp
(
− x
β

)
w.p. 1− p

where p ∼ Bernoulli(π)

The cube root transformation makes the continuous component less heavily skewed. Additionally, for the

purposes of the copula model, zero values were instead replaced with uniform random variables sampled

from a U(0, ε) distribution where ε is the smallest nonzero value in the observed dataset.

The complete spatial Gaussian copula algorithm used here is detailed below:
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Algorithm 1: Spatial Gaussian Copula

Result: Predictions for unobserved locations
for Each simulated dataset do

Cube root transform observed responses;
Find smallest nonzero responses ε ;
Transform 0s into small U(0, ε) random variables;
Calculate spatial covariance parameters θN , θR and ZIG parameters β, π;
if covariates present then

calculate β, π using logistic and Gamma GLM with the covariates;
else

calculate β, π using logistic and Gamma intercept-only GLM;
end
Transform responses to standard uniform using CDF of zero-inflated Gamma;
Use kriging on the standard normal random variables to get estimates for the unobserved values ;
Backtransform unobserved standard normal values to get predictions for the unobserved values
on the original scale;

end

3.3 Spatial Random Forest

The random forest is a machine learning algorithm which creates an ensemble of decision trees using boot-

strapped samples of the original data[2]. Each of the n decision trees is trained on a random subset of

variables at each split in the tree. While individual decision trees are prone to overfitting on training data,

a large collection of randomly generated weak learners is less prone to these biases. The prediction of the

random forest is taken as the mode or average of the entire ensemble. One of the notable advantages of using

a machine learning algorithm like random forests is that no statistical assumptions are required, therefore,

we are not required to transform the shape of the data as we had to in the Gaussian copula model.

Random forests have been used in spatial prediction, but the spatial information is often disregarded[1].

Ignoring spatial autocorrelation can result in biased predictions. In order to incorporate this information

in the model, the RFsp packages introduces the spatial random forest which uses buffer distances from

observed points as explanatory variables. The generic spatial random forest system is proposed in terms of

three main input components:

Y (s) = f(XG, XR, XP )

where XG are covariates based on geographic proximity or spatial relationships, and XR and XP are referred

to respectively as surface reflectance covariates and process-based covariates. Common examples of surface

reflectance covariates would be spectral bands from remote sensing images. Process-based covariates are

more traditional independent variables, for example, average annual precipitation. Not all types of covariates

need be present to create a spatial random forest and previous work by Hengl et. al. has demonstrated that

including only XG generates predictions similar to ordinary kriging while including XG and XP generates
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predictions similar to universal kriging[1].

The RFsp packages is built on top of the ranger R package which supports high dimensional datasets.

However, the authors of spatial random forest caution that since distances need to be calculated in order to

include spatial information, RFsp might be slow for large datasets.

Algorithm 2: Spatial Random Forest

Result: Predictions for unobserved locations
for Each simulated dataset do

The buffer distances between each point in the training set is calculated;
n random samples are drawn with replacement from the training data;
n trees are generated from the random samples with the buffer distances as covariates;
The buffer distances between each unobserved location and the points in the training set is
calculated;

These buffer distances are input into the random forest and a prediction is generated;

end

4 Results

We will be comparing the predictive accuracy of the following models:

1. Spatial Gaussian copula with ZIG marginal distributions

2. Ordinary kriging via automap

3. Several spatial random forests with varying num.trees = 50, 100, 150

4. Semicontinuous zero-corrected kriging and spatial random forests where predicted values smaller than
the smallest nonzero training observation are converted to 0

Testing will be done on simulated total volume and hemlock volume, as well as the resampled original

data. Hemlock data was of particular study interest since nearly 56% of its original values were zeros,

possibly representing a more significant challenge to model than total volume which had 24.3% zeros.

We will also examine how changes in the size of the training set affect the accuracy for different methods

with n = 100, 200, 300, 500, 1000, 1200. The metric of interest will be root mean square prediction error:

RMSPE =

√√√√ 1

mR

R∑
r=1

m∑
j=1

(ŷj|r − yj|r)2

where r ∈ R is a simulated dataset and j|r signifies the prediction for observation j in the dataset r.

We will also examine the signed relative bias of each pointwise prediction method:

SRB = sign(τ)

√
τ2

MSPE − τ2
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where τ = 1
mR

∑R
r=1

∑m
j=1(ŷj|r − yj|r). This formula derives from the fact that mean squared prediction

error is equal to the bias of the estimate squared plus the variance of the estimate. A smaller absolute value

of SRB indicates smaller bias in the method with a negative value indicating underprediction and a positive

value indicating overprediction.[4]

Our final prediction metric is 90% prediction interval coverage for each of the methods:

PIC90 =
1

mR

R∑
r=1

m∑
j=1

I
(
ŷj|r − 1.645ŝe(ŷj|r) ≥ yj|r ∩ yj|r ≤ ŷj|r + 1.645ŝe(ŷj|r)

)

where ŝe(ŷj|r) is the standard error of all the predicted values ŷj|r in resampled dataset r.[4] PIC90 captures

the proportion of actual values for the unobserved points fall within their respective 90% prediction intervals.

A well-calibrated model with proper assumptions should have a PIC90 close to 90%, but since our training

and test points are spatially autocorrelated, we will examine this metric from the viewpoint of comparing

models against one another.

In addition to these metrics, we will also examine the residuals and specific prediction performance of

zero values in each model.

4.1 RMSPE

Simulated Total Volume
n Copula Kriging RFsp150 RFsp100 RFsp50 RFsp150(zeros) Kriging (zeros)

1200 246.139 238.878 251.040 250.719 252.216 251.042 238.868
1000 248.894 240.552 251.679 251.900 252.947 251.684 240.541
500 254.933 243.617 253.945 254.267 255.217 253.957 243.604
300 264.614 248.749 256.095 256.304 257.337 256.116 248.721
200 275.154 253.674 258.074 258.246 259.417 258.113 253.628
100 298.042 268.752 266.179 266.376 267.221 266.260 268.717

Cyan indicates lowest RMSPE for sample size; gray indicates highest RMSPE.

For small sample sizes in the total volume simulation, the copula model had between 5% and 10% higher

RMSPE than the kriging or random forest models. As n increases, the copula model had lower RMSPE

than the random forests. Kriging and zero-corrected kriging had the lowest RMSPE for most sample sizes,

narrowly outperforming random forests.
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Simulated Hemlock Volume
n Copula Kriging RFsp150 RFsp100 RFsp50 RFsp150(zeros) Kriging (zeros)

1200 48.391 46.609 48.631 48.567 48.799 48.632 46.594
1000 50.500 48.318 50.197 50.268 50.442 50.197 48.309
500 51.081 48.821 50.755 50.839 51.026 50.756 48.807
300 51.456 49.879 51.040 51.120 51.332 51.041 49.866
200 52.030 50.139 51.161 51.192 51.396 51.161 50.123
100 52.542 51.560 51.671 51.679 51.911 51.671 51.546

We see a similar pattern to the hemlock volume simulation where kriging and zero-corrected kriging had

the lowest RMSPE. The copula model had the highest RMSPE except for n = 1200, however the relative

differences between all the models are smaller than in the total volume simulation.

Resampled Total Volume
n Copula Kriging RFsp150 RFsp100 RFsp50 RFsp150(zeros) Kriging (zeros)

1200 296.905 303.859 293.510 294.086 295.379 293.510 303.846
1000 295.311 301.473 292.139 292.557 293.580 292.139 301.461
500 303.553 304.366 296.997 297.362 298.388 296.997 304.349
300 305.409 304.526 300.984 301.412 302.469 300.984 304.504
200 308.267 304.898 303.921 304.393 305.360 303.922 304.867
100 313.791 305.210 309.662 310.072 310.971 309.669 305.159

In the total volume resampling study, random forests with num.trees = 150 have the best RMSPE across

the board. For small training sizes, the copula model has the highest RMSPE but this changes when n grows

large where it outperforms kriging and zero-corrected kriging.

4.2 Signed Relative Bias

In all simulations and sample sizes, the copula model showed negative bias indicating that predictions tend

to be underestimated. Random forests and kriging models show minimal bias.

Simulated Total Volume
n Copula Kriging RFsp150 RFsp100 RFsp50 RFsp150(zeros) Kriging (zeros)

1200 -.146 -.001 .003 .003 .003 .003 -.001
1000 -.155 .001 .009 .009 .009 .009 .001
500 -.152 .001 .007 .007 .006 .006 .001
300 -.161 .002 .004 .003 .003 .003 .002
200 -.194 .000 -.001 -.001 -.001 -.002 .000
100 -.134 .006 .003 .003 .003 .001 .006

Simulated Hemlock Volume
n Copula Kriging RFsp150 RFsp100 RFsp50 RFsp150(zeros) Kriging (zeros)

1200 -.184 .014 .012 .011 .011 .012 .015
1000 -.190 .001 .004 .004 .004 .004 .002
500 -.190 .000 .002 .002 .001 .002 .001
300 -.190 .003 .001 .001 .001 .001 .004
200 -.189 .002 -.002 -.001 -.001 -.002 .003
100 -.182 .011 .002 .003 .003 .002 .012
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Resampled Total Volume
n Copula Kriging RFsp150 RFsp100 RFsp50 RFsp150(zeros) Kriging (zeros)

1200 -.300 -.002 .012 .012 .014 .012 -.002
1000 -.297 .002 .018 .018 .018 .018 .002
500 -.301 .000 .013 .013 .013 .013 .000
300 -.292 .000 .015 .015 .015 .015 .001
200 -.282 .000 .012 .013 .014 .012 .000
100 -.260 .007 .008 .008 .009 .008 .007

4.3 Residual Analysis

We produced residual plots for the Gaussian copula, kriging, and random forests with num.trees = 150 in

each of the simulation scenarios with sample size n = 500. The dotted line on each plot corresponds indicates

a predicted value of 0. We see that regardless of model or simulation method, ŷ tended to underestimate

large values of the observed response.

Figure 4: Total volume residual plots

The residual plots in figure 4 are similar for the most part. There is a distinct line for the zero predicted

values in the copula model whereas the kriging model predicted some negative values.

Figure 5 suggests that random forests produce residuals with higher variance than either the other models.

While copula and kriging produced residual plots with almost rectangular shapes, random forests produced

residuals that looked more like a cloud of points, particularly with observed values around 500.

Figure 6 shows that random forests have the widest residual spread which is relatively homoskedastic

as observed values increase. This contrasts with kriging residuals which appears as a narrowing funnel as

observed values increases. The kriging residuals also produced some predictions near zero, even for large

values. This manifests visually as a “gap” within the kriging residuals.
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Figure 5: Hemlock volume residual plots

Figure 6: Resampled total volume residual plots

4.4 Prediction Interval Coverage

Total Volume Hemlock Resampled
n Copula Kriging RFsp150 Copula Kriging RFsp150 Copula Kriging RFsp150

1200 .841 .824 .846 .721 .569 .803 .735 .628 .795
1000 .847 .832 .855 .718 .595 .827 .739 .639 .801
500 .835 .814 .850 .700 .623 .819 .717 .629 .794
300 .812 .786 .844 .689 .640 .816 .711 .628 .785
200 .793 .759 .835 .676 .630 .803 .706 .633 .775
100 .698 .686 .809 .630 .590 .769 .705 .650 .751

We computed PIC90 is computed for the Gaussian copula, kriging, and random forests with num.trees =

150. All of the models failed to reach 90% prediction coverage, but random forests had the greatest coverage

which was fairly consistent among the different sample sizes. The copula model started with prediction
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coverage below 70%, but as sample size increased both closed the gap with the random forest. Kriging had

the lowest PIC90 across the board, particularly in the hemlock and resampled study.

4.5 Prediction of zero values

In the resampled data study with n = 500, we also calculated RMSPE and median predictions among

the different methods for points with an observed value of 0. Figure 7 displays density histograms of the

predicted values for the Gaussian copula, zero-corrected random forest, and zero-corrected universal kriging.

Figure 7: Predictions for zero values

Median ŷ RMSPE

Copula RFsp150(zeros) Kriging(zeros) Copula RFsp150(zeros) Kriging(zeros)

0 7.49 40.5 20.7 59.6 62.4

The copula model far outperforms both the random forest and universal kriging model for predicting

zero values. Across 1000 resampled datasets, the copula correctly predicted 78.2% of observed zero values,

whereas the random forest only correctly predicted 27.5% of the values and universal kriging predicted 13.0%.

5 Conclusion

The simulations in our study only covered a small subset of forestry inventory scenarios, but with the

prediction metrics we selected, kriging matched or outperformed random forests and Gaussian copula by

most measures. While both ordinary and universal kriging had a few data artifacts in the form of negative

predictions, the kriging models consistently produced unbiased estimates with relatively low RMSPE. Both

kriging and random forest models also had low absolute values of SRB, suggesting miniscule bias, if any.
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In contrast, our results suggest that the Gaussian copula model underpredicts values moreso than the

other two techniques, which may be due to an overabundance of zeros in the predictions. Given the SRB

metrics for each model, we might reasonably posit that model bias played a role in inflating the copula

model’s RMSPE. However, if properly estimating unobserved points which contain zero are of significant

practical importance, the Gaussian copula far outperforms both random forest and kriging.

For the semicontinuous, skewed responses we simulated, every single method underestimated large values,

as evidenced by the downward trending residual plots we generated for each scenario. The residual plots

also showed that the random forest predictions had greater variance than either the copula or the kriging.

This larger variance also mainfests itself in the PIC90 metrics where the random forest consistently had the

greatest coverage among the methods. High PIC90 might be desireable in cases where interval estimates are

preferred to point estimates, although wide intervals might have limited practical use.
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