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Abstract

This midterm has 4 problems

1 Q1

Amphipods are routinely used in sediment toxicity tests. Here we consider the survival
of an amphipod is case and control toxicity samples.

Deaths Survived Total
case x = 30 n− x = 70 100

control y = 10 n− y = 90 100
Total t = 40 2n− t = 160 200

Let p1 and p2 be the respective probabilities of death of an individual amphipod when
exposed to contaimined and cleaned sediments samples. Assume that x ∼ B(n, p1) and
y ∼ Bin(n, p2).

1.1 part a.

Write down a joint prior distribution for p1 and p2.

answer It is known that a good noninformative prior for a binomial distribution pa-
rameter p is Beta(1/2, 1/2). If we assume that p1 is independent of p2, then we can
establish a joint prior for p1 and p2 that is just the product of the marginal priors.

π(p1, p2) ∝ p
1/2
1 (1− p1)1/2p

1/2
2 (1− p2)1/2

1.2 part b.

Write down the likelihood function and derive the corresponding posterior distribution
of p1 and p2 given the data.

The joint likelihood function for x and y is just the product of the individual likeli-
hoods since we can reasonably assume that x is independent from y.

p(x, y) =

(
n

x

)
px1(1− p1)n−x

(
n

y

)
py2(1− p2)n−y
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The posterior then can be obtained by multiplying this likelihood with the joint prior
we obtained from before.

π(p1, p2|x, y) = p(x, y|p1, p2)π(p1, p2)

∝ px1(1− p1)n−xpy2(1− p2)n−yp
−1/2
1 (1− p1)−1/2p

−1/2
2 (1− P2)−1/2

∝ p
x−1/2
1 (1− p1)n−x−1/2p

y−1/2
2 (1− p2)n−y−1/2

The notice that the joint posterior distribution is equal to Beta(x + 1/2, n − x +
1/2)Beta(y + 1/2, n− y + 1/2). This joint posterior can be factored apart into separate
function of p1 and p2.

answer

1.3 part c.

Compute the 95% Bayesian intervals for the following quantities:

1. p1 − p2

2. p1/p2

3. (1− p1)/(1− p2)

answer We can answer this by drawing random samples from the posterior distribu-
tions, computing the appropriate quantities, then finding the 2.5% and 97.5% quantiles

p 1 post <− rbeta (10000 , shape1 = 30 .5 , shape2 = 70 . 5 )
p 2 post <− rbeta (10000 , shape1 = 10 .5 , shape2 = 90 . 5 )

p d i f f <− p 1 post − p 2 post
quantile ( pd i f f , c ( . 0 2 5 , . 9 75 ) )

pdiv <− p 1 post/p 2 post
quantile ( pdiv , c ( . 0 2 5 , . 9 75 ) )

p r a t i o <− ( (1 − p 1 post )/(1 − p 2 post ) )
quantile ( prat io , c ( . 0 2 5 , . 9 75 ) )

Bayesian CI for p1 − p2:
2.5% 97.5%
.0911 .3058

Bayesian CI for p1/p2:
2.5% 97.5%
1.61 5.96

Bayesian CI for (1− p1)/(1− p2):
2.5% 97.5%
.667 .893
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1.4 part d.

We are interested in the odds ratio θ and the odds product φ:

θ =
p1(1− p2)

(1− p1)p2

φ =
p1p2

(1− p1)(1− p2)

Summarize the posterior distribution of θ and φ given the data.

answer Assuming that we have drawn random observations from posterior distributions
for p1 and p2, we can use the following code to compute the distributions of θ and φ.

theta post <− (p 1 post∗(1 − p 2 post ) )/ ( (1 − p 1 post )∗p 2 post )
hist ( theta post )
summary( theta post )

phi post <− (p 1 post∗p 2 post )/ ( (1 − p 1 post )∗(1 − p 2 post ) )
hist ( phi post )
summary( phi post )

The distribution of θ looks like the following:

We can see that it is right skewed curve with the following numerical summary:

Min Q1 Median Mean Q3 Max
.9616 2.9388 3.816 4.178 5.02 21.34
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The distribution of φ looks like similar in shape to θ.

We have the following numerical summary.

Min Q1 Median Mean Q3 Max
.009 .036 .048 .051 .062 .173

1.5 part e.

Compute the probability P (θ > 1|data)

answer Running the following code, we get .9998 as our probability.

sum( theta post > 1)/length ( theta post )

1.6 part f.

What conclusions can you draw about the test results?

answer We have significant evidence that the odds ratio is greater than 1, thus odds
of death is much greater in the case group than the control group.
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2 Q2

The following data is the amount of aluminum in 19 samples of pottery at two kiln sites.

Summary statistics of the two samples

• n1 = 14

• x̄1 = 12.275

• s1 = 1.31

• n2 = 5

• x̄2 = 18.18

• s2 = 1.78

Assume that the amount of aluminum at site 1 has a normal distribution N(µ1, σ
2
1)

and site 2 has another normal distribution N(µ2, σ
2
2). Answer the following questions.

2.1 part a.

Construct a 95% Bayesian intervals for:

1. The difference in means µ1 − µ2

2. The ratio of the two variances σ2
1/σ

2
2

In order to answer this question, we have to use the following facts on the posterior
distributions for the Normal parameters which were derived on page 65 of Bayesian Data
Analysis. If we define our data vector as X, the marginal posterior distributions for µ
and σ2 are:

• µ|σ2, X ∼ N(X̄, σ2/n)

• σ2|X ∼ Scaled Inv-χ2(n− 1, s2)

If we make the reasonable assumptions that the samples are independent from one
another, we can compute the posterior distributions for each µ and σ2, sample from those
posterior distributions, and then get the Bayesian intervals using those random samples.

There is no built-in sampling function in R for the inverse χ2 distribution, but if we

use the fact that (n−1)s2

σ2 ∼ χ2
n−1, we can work around this.

If we random sample X from the χ2
n−1 distribution, we can get an inverse χ2 dis-

tributed random observation σ2 using σ2 = (n−1)s2

X
. We then use this σ2 value in our

conditional Bayesian posterior for µ.
The R code that I used for this problem is provided here:

l l ande ryn <− c ( 1 4 . 4 , 13 . 8 , 14 . 6 , 11 . 5 , 13 . 8 , 10 . 9 , 10 . 1 , 11 . 6 ,
11 . 1 , 13 . 4 , 12 . 4 , 1 3 . 1 , 1 2 . 7 , 12 . 1 )

i s l a nd thomas <− c ( 1 8 . 3 , 15 . 8 , 18 . 0 , 18 . 0 , 20 . 8 )

n1 <− length ( l l ande ryn )
xbar 1 <− mean( l l ande ryn )
s 1 <− sd ( l l ande ryn )

sigma2 1 post <− ( ( n1−1)∗s 1ˆ2)/ ( rchisq (10000 , df = n1 −1) )
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mu 1 post <− sapply ( sigma2 1 post , FUN = function ( x ) rnorm(n = 1 ,
mean = xbar 1 , sd = sqrt ( x/n1 ) ) )

n2 <− length ( i s l a nd thomas )
xbar 2 <− mean( i s l a nd thomas )
s 2 <− sd ( i s l a nd thomas )

sigma2 2 post <− ( ( n2−1)∗s 2ˆ2)/ ( rchisq (10000 , df = n2 −1) )
mu 2 post <− sapply ( sigma2 2 post , FUN = function ( x ) rnorm(n = 1 ,

mean = xbar 2 , sd = sqrt ( x/n2 ) ) )

mudif f post <− mu 1 post − mu 2 post
quantile ( mudif f post , c ( . 0 2 5 , . 9 75 ) )

The 95% Bayesian credible interval we get for µ1 − µ2 is:

2.5% 97.5%
-8.24 -3.58

There are a few ways to compute the Bayesian posterior interval for
σ2
1

σ2
2
. The first way

is to recognize that since the conditional posterior for σ2
1 and σ2

2 is scaled inverse-χ2, we
can reorganize the ratio of the variables into an F-distribution.

σ2
1|data ∼ Scaled Inv-χ2(n1 − 1, s2

1) so

σ2
1

(n1 − 1)s2
1

∼ Inv-χ2(n1 − 1) and

(n1 − 1)s2
1

σ2
1

∼ χ2(n− 1)

This also holds for σ2
2. Therefore, the ratio of

σ2
1

σ2
2

can be turned into a scaled F-distribution

through the following steps.

s2
2/σ

2
2

s2
1/σ

2
1

∼ F (n2 − 1, n1 − 1)

σ2
1

σ2
2

(
s2

2

s2
1

)
∼ F (n2 − 1, n1 − 1)

σ2
1

σ2
2

∼ s2
1

s2
2

F (n2 − 1, n1 − 1)

So now we can either simulate a lot of scaled inverse-χ2 random variables for σ2
1

and σ2
2 which we have already done, simulate a lot of random observations from an F

distribution and scale them, or just find the quantiles of this scaled F distribution. Any
of the following produce approximately the same intervals:

s1 s2 r a t i o <− sigma2 1 post/sigma2 2 post
quantile ( s1 s2 ra t i o , c ( . 0 2 5 , . 9 75 ) )
# or . . .
s1 s2 r a t i o <− ( s 1ˆ2/s 2ˆ2)∗r f ( length ( sigma2 1 post ) , n2−1, n1−1)
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quantile ( s1 s2 ra t i o , c ( . 0 2 5 , . 9 75 ) )
# or . . .
( s 1ˆ2/s 2ˆ2)∗ ( qf (c ( . 0 2 5 , . 9 75 ) , n2−1, n1−1) )

The 95% Bayesian credible interval we get then for σ2
1/σ

2
2 is:

2.5% 97.5%
.07 2.4

2.2 part b.

What prior knowledge are you assuming in constructing these intervals?

answer First, we need to know first that the samples are independent from each other.
We also assume that we have a noninformative prior on the random vector (µ, σ2).
Bayesian Data Analysis suggests using a prior proportional to 1

σ2 .
We could have used a conjugate prior, such as the Normal-Scaled-inverse-χ2 distri-

bution which was mentioned in the textbook, but this would have required us to specify
guesses for µ1, µ2, σ2

1, and σ2
2. Since we did not have this information available to us, it

was probably in our best interest to let the data “speak for itself”.

2.3 part c.

How does these results compare with classical t and F confidence intervals?

answer Using the base R functions t.test and var.test, we find that the t-test with
the unequal variance assumption gives us a 95% frequentist confidence interval for µ1−µ2

of

2.5% 97.5%
-7.8 -3.4

and a 95% frequentist inverval for σ2
1/σ

2
2:

2.5% 97.5%
.069 2.42

Note that var.test() uses this formula to calculate the confidence interval for
σ2
1

σ2
2
:

[
s2

1

s2
2

1

Fα/2,n1−1,n2−1

,
s2

1

s2
2

Fα/2,n2−1,n1−1

]
These intervals are close to our Bayesian intervals, but not exactly the same.
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3 Q3

Samples are taken from twenty batches of geological materials which are mined for their
commericial values. The amount of impurities found are found to have the following
statistics:

1. n = 20

2. x̄ = 51.56

3. s = 3.23

Let’s regard these as independent samples from a normal distribution with µ and σ2.
Find a 95% posterior credible interval for µ under each of the conditions.

3.1 part a.

The values of σ2 is known to be 10 and our prior distribution for µ is normal with mean
60 and standard deviation 20.

answer In this scenario, the variance is known! This allows us to use the known
posterior distribution for µ with known variance (which we previously saw in homework
2, question 8, part a.)

f(x̄|µ)f(µ) ∝ exp

(
−(µ− µ0)2

2σ2
0

)
exp

(
−n(x̄− µ)2

2σ2

)
∝ N

(
nx̄
σ2 + µ0

σ2
0

n
σ2 + 1

σ2
0

,
1

n
σ2 + 1

σ2
0

)

By inputting x̄ = 51.445, n = 20, σ2 = 10, σ2
0 = 202, µ0 = 60, we get the following

distribution:

µ|data, σ2 ∼ N

( 20x̄
10

+ 60
202

20
10

+ 1
202

,
1

20
10

+ 1
202

)
∼ N (51.55, .499)

We can compute a 95% credible interval using this posterior distribution: 51.55 ±
1.96
√
.499. This gives us:

2.5% 97.5%
50.07 52.84

3.2 part b.

The value of σ2 is unknown. Our prior distribution for σ2 is an inverse gamma distribution
with mean 0.1 and standard deivation .05. Our conditional prior distribution for µ given
σ2 is normal with mean 60 and variance 40σ2.
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answer There are a couple ways of solving this problem depending on which param-
eterization we use. The first step is solving a simple system of equations to find the
parameters α and β for the inverse Gamma prior distribution using the mean and vari-
ance that we have been given. Thankfully, the inverse Gamma distribution has closed
formulas for mean and variance.

E[σ2] =
β

α− 1
= .1

V [σ2] =
β2

(α− 1)2(α− 2)
= .052

→ π(σ2) = Inv-Gamma(6, 1/2)

I decided to find the posterior distribution form for a Normal-Inv-χ2 prior since the
inverse Gamma prior we selected is equivalent to a scaled inverse χ2 distribution through
the following relation:

X ∼ Inv-Gamma(α/2, 1/2) = Scaled Inv-χ2(α, 1/α)

Since β = 1/2, we can instead represent the prior as Inv-Gamma(6, 1/2) = Scaled Inv-χ2(12, 1/12).
Our joint prior distribution then is:

π(µ, σ2) ∝ N(µ|µ0, 40σ2)× Inv-Gamma(σ2|6, 1/2)

∝ N(µ|µ0, 40σ2)× Inv-χ2(σ2|12, 1/12)

∝ σ−1(σ2)−7exp

(
− 1

2σ2

(
1 +

1

40
(µ− µ0)2

))
The posterior distribution for this scenario is:

p(µ, σ2|data) = N(µ|µ, 40σ2)× Inv-χ2(σ2|6, 1

6
)p(data|µ, σ2)

∝ σ−1(σ2)−4exp

(
−

1 + (µ−60)2

40

2σ2

)
× (σ2)−n/2exp

(
− 1

2σ2

(
ns2 + n(x̄− µ)2

))
This is a pretty complex posterior, but it is able to be shown1that this is equivalent

to a Normal-Inv-χ2(µn, κn, ηn, σ
2
n) where:

• κn = κ0 + n = 1
40

+ 20

• ηn = η0 + n = 6 + 1
40

• µn = κ0µ0+nx̄
κn

• σ2
n = 1

ηn
(η0σ

2
0 + (n− 1)s2 + nκ0

κ0+n
(µ0 − x̄)2

• η0 = 6

• σ2
0 = 1

60

1See https://www.cs.ubc.ca/ murphyk/Papers/bayesGauss.pdf
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• κ0 = 1
40

In short, the Normal-Inv-χ2 prior is a conjugate prior! Now we have to integrate this
posterior distribution over σ2 to get the marginal posterior distribution for µ. This is
also pretty complex, but thankfully someone has already done this for me and showed
that the marginal posterior distribution for µ is a scaled and shifted t-distribution (see
this wikipedia article on Bayesian inference for an unknown mean).

p(µ|data) ∝
(

1 +
κn
ηnσ2

n

(µ− µn)2

)−(ηn+1)/2

∝ tηn(µ|µn, σ2
n/κn)

We can simulate an observation x from this location-scale t-distribution using x =
µn + (σ2

n/κn)T where T is an observation from the tηn distribution. Here is the relevant
R code for running this simulation.

q3data <− c ( 4 4 . 3 , 50 . 2 , 51 . 7 , 49 . 4 , 50 . 6 , 55 , 53 . 5 , 48 . 6 , 48 . 8 ,
53 . 3 , 59 . 4 , 51 . 4 , 52 . 0 , 51 . 9 , 51 . 6 , 48 . 3 , 49 . 3 , 54 . 1 , 52 . 4 , 53 . 1 )

xbar <− mean( q3data )

mu0 <− 60
n <− length ( q3data )
k0 <− 1/40
kn <− k0 + n
eta0 <− 12
etan <− eta0 + n
mu0 <− 60
mun <− ( k0∗mu0 + n∗xbar )/kn
sigma2n <− (1/etan )∗ ( eta0∗(1/60) +

(n − 1)∗sd ( q3data ) +
(n∗k0 )/ ( k0 + n)∗ ( xbar − 60) ˆ2)

t etan <− rt (n = 10000 , df = etan )
mu post <− mun + t etan∗sqrt ( sigma2n/kn )
quantile (mu post , c ( . 0 2 5 , . 9 75 ) )

The 95% posterior credible interval is found to be (50.921, 52.014), which is close to
what we got in part a.

4 Q4

Let X1, . . . , Xn be an iid sample from a normal distribution with mean µ = θσ, variances
σ2. Here, θ is known as the noncentrality parameter.

4.1 part a.

Show that the likelihood function can be written as
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L(θ, σ) ∝ σ−nexp

(
− 1

2σ2

n∑
i=1

(xi − θσ)2

)

answer Let’s do some algebra!

n∏
i=1

f(xi|θ, σ2) =
n∏
i=1

1√
2πσ

exp

(
−(xi − θσ)2

2σ2

)

= (2π)−n/2σ−nexp

(
− 1

2σ2

n∑
i=1

(xi − θσ)2

)

∝ σ−nexp

(
− 1

2σ2

n∑
i=1

(xi − θσ)2

)

4.2 part b.

Derive the Fisher Information Matrix.

answer Define the log likelihood function as:

L(θ, σ) = −nln(σ)− 1

2σ2

n∑
i=1

(xi − θσ)2

The Fisher Information Matrix then is:

I(θ, σ) = −E
(

∂
∂θ2
L(θ, σ) ∂

∂θσ2L(θ, σ)
∂

∂σ2θ
L(θ, σ) ∂

∂σ4L(θ, σ)

)
This next part involves some calculus. Instead, of finding the information for the

entire sample of n observations, I will find the information for one observation since we
know from the properties of Fisher information that the information of an iid sample is
just a multiple of the information of a single observation.

∂

∂θ2
L(θ, σ) =

∂

∂θ

x− θσ
σ

= −1

∂

∂θ∂σ2
L(θ, σ) =

∂

∂σ2

x− θσ
σ

=
∂

∂σ2

x

(σ2)1/2
= − x

2σ3

We have to take the partial derivatives with respect to σ2 as opposed to σ. If we
define τ = σ2, we can rewrite the likelihood in terms of τ and find the partial derivatives
using that reparameterized likelihood.
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∂

∂τ∂θ
L(θ, τ) =

∂

∂θ
− 1

2τ
− 2θxτ 1/2 − 2x2

4τ 2

=
∂

∂θ
− 2xθτ 1/2

4τ 2

= − x

2τ 3/2
= − x

2σ3

∂

∂τ 2
L(θ, τ) =

∂

∂τ

1

2τ
+

x2

2τ 2
− xθ

2τ 3/2

= − 1

2τ 2
− x2

τ 3
+

3xθ

4τ 5/2
(now substitute σ2 back in)

= − 1

2σ4
− x2

σ6
+

3xθ

4σ5
=

3xθσ − 2σ2 − 4x2

4σ6

Using the fact that E[x] = θσ and E[x2] = σ2 + θ2σ2, we can finally calculate the
Fisher information matrix.

−E
[

3xθσ − 2σ2 − 4x2

4σ6

]
=

4σ2 + 4θ2σ2 + 2σ2 − 3θ2σ2

4σ6

=
σ2(6 + θ2)

4σ6

−E
[
− x

2σ3

]
=

θσ

2σ3
=

θ

2σ2

And finally...

I(θ, σ2) = −E
(

1 θ
2σ2

θ
2σ2

6+θ2

4σ4

)
I also found the Fisher information matrix for θ and σ to double check my work. This

is shown below.

∂

∂θ
L(θ, σ) =

x

σ
− θ

∂

∂θ2
L(θ, σ) = −1

∂

∂θσ
L(θ, σ) = − x

σ2

∂

∂σ
L(θ, σ) = − 1

σ
+
x2

σ3
− xθ

σ2

∂

∂σθ
L(θ, σ) = − x

σ2

∂

∂σ2
L(θ, σ) =

−3x2 + 2xθσ + σ2

σ4

I(θ, σ) = −E
(

1 θ
σ

θ
σ

2+θ2

σ2

)
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4.3 part c.

Derive the Jeffrey’s prior for θ and σ
The determinant of the Fisher information matrix we found is:

6 + θ2

4σ4
− θ2

4σ4
=

3

2

(
1

σ4

)
Then, since Jeffrey’s prior is defined as the square root of the determinant of the

information matrix, we have:

det(I(θ, σ2))1/2 ∝ 1

σ2

However, if we are interested instead in Jeffrey’s prior for θ and σ, we are not yet
done. While Jeffrey’s prior is invariant, we still have to multiply this by ∂σ2

∂σ
(Bayesian

Data Analysis, pg. 53 ).
This gives us

det(I(θ, σ))1/2 ∝ det(I(θ, σ))1/2 × |∂σ
2

∂σ
|

∝ 1

σ2
2σ

∝ 1

σ

This matches up with our Jeffrey’s prior for θ and σ if we had calculated it directly
from the information matrix for σ:

det(I(θ, σ))1/2 =

(
2 + θ2

σ2
− θ2

σ2

)1/2

∝
(

2

σ2

)1/2

∝ 1

σ
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