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Abstract

We have two problems related to Bayesian ANOVA and Bayesian χ2 tests.

1 Q1

We have the following data from Politifact:

Name True Mostly true Half true Mostly false False Pants on fire

Paul Ryan 10 15 18 20 7 3
Nancy Pelosi 4 3 11 5 7 3

Let’s use Bayesian methods to analyze this data.

assumptions Some assumptions that we will have to make is that Nancy Pelosi and
Paul Ryan’s statements are independent from one another (this is a stretch) and that
both of their statements follow a multinomial distribution where every statement they
make has some probability pi of following into the ith category.

prior distribution A reasonable prior distribution would be the Dirichlet distribution
since the Dirichlet is the conjugate prior of the multinomail. We will probably want a
noninformative prior, so our prior then for both Nancy and Paul isDirichlet(1/2, . . . , 1/2)
which is a distribution with 6 parameters, one for each Politifact category.

likelihood Our likelihood function for each speaker’s statements then is

p(p1, p2, . . . , p6|data) ∝ p(data|p1, . . . , p6)π(p1, . . . , p6)

∝ py11 . . . pynn

n∏
i=1

pai−1
i

∝ py1+a1−1
1 . . . py6+a6−1

6

where again ai = 1/2,∀i.
Therefore, the posterior distribution for Nancy Pelosi is

p(p1, . . . , pn|data) = Dirichlet(4.5, 3.5, 11.5, 5.5, 7.5, 3.5)

and our posterior distribution for Paul Ryan is

p(p1, . . . , pn|data) = Dirichlet(10.5, 15.5, 18.5, 20.5, 7.5, 3.5)
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results After drawing many observations from these Dirichlet posterior distributions,
we find the following marginal posterior distributions. The blue histograms are for Nancy
Pelosi’s posterior distributions and the red histograms are for Paul Ryan.

Given the marginal posterior distributions, we can make the following rough conclusions:

1. Nancy and Paul have roughly the same probability of making a true statement
(median around 12%)

2. Paul has a greater probability of making mostly true statements

3. Nancy has a greater probability of making half true statements

4. Paul has a greater probability of making mostly false statements
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5. Nancy has a greater probability of making false statements

6. Nancy has a greater probability of making pants on fire statements

This analysis isn’t perfect though. If anything about this makes us cautious, it is that
Nancy has a lot less statements on Politifact than Paul Ryan did (Paul has 73 statements
on Politifact whereas Nancy only has 33). We probably want a more even sample size
between the two speakers for future analyses.

2 Q2

We have the following data from Bayesian Data Analysis, pg 292 :

Machine Measurements

1 83,92,92,46,67
2 117,109,114,104,87
3 101,93,92,86,67
4 105,119,116,102,116
5 79,97,103,79,92
6 57,92,104,77,100

2.1 part a.

Perform a Bayesian ANOVA for this dataset. Write down the details of the model, prior
distributions, and posterior distributions.

answer In this problem, we have 6 machines with 5 observations for each. If we consider
yi,j to be the jth measurement from machine i, we can write this as:

yi,j ∼ N(µi, σ
2)

where i = 1, . . . , 6 and j = 1, . . . , 5.
Our prior will be

π(µ1, µ2, . . . , σ
2) ∝ 1

σ2

Our posterior distributions will be

n(k − 1)MSw

σ2

∣∣∣∣∣data ∼ χ2
n(k−1)

√
k(θi − ȳi.)√
MSw

∣∣∣∣∣data =
zi
ν

where MSw =
1

n(k − 1)

n∑
i

k∑
j

(yij − ȳi.)2

We calculate MSw = 4926.8, therefore, we have

4926.8

σ2

∣∣∣∣∣ ∼ χ2
24
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For the posteriors of µ1, . . . , µ6, we see that the marginal distributions will be centered
around the ȳi. with a scale factor of

√
MSw/k. This gives us a multivariate t distribution

with ~µ = (76, 106.2, 87.8, 111.6, 90.0, 86.0) and scale factor of 31.39.
If we randomly draw from this posterior distribution, we get the following marginal

posteriors for µ1, . . . µ6.

We see that there doesn’t appear to be any significant difference in the centers of each
marginal distribution, suggesting that there is no difference between the machines.

2.2 part b.

Compare these results with classical ANOVA. What conclusions do you draw?

answer Classical ANOVA gives us similar conclusions! We do not have significant
evidence against the null hypothesis that µ1 = . . . = µ6. Here is the console output from
the frequentist ANOVA tests.

> machines . aov <− aov ( measurements ˜ machine , data = machines )
> summary( machines . aov )

Df Sum Sq Mean Sq F value Pr(>F)
machine 1 45 45 .4 0 .136 0 .715
Res idua l s 28 9353 334 .0

2.3 part c.

Is the equal variance assumption reasonable for this dataset?
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answer I don’t think so. If we look at the boxplot for each machine’s measurement
data, there seems to be some heteroskedasticity.

2.4 part d.

Provide both R and Rstan code for part a.
I didn’t end up using Rstan for this problem, I just used code that we discussed in

lecture.

machine <− c ( rep (1 , 5) , rep (2 , 5) , rep (3 , 5) , rep (4 , 5) , rep (5 , 5) ,
rep (6 , 5) )

measurements <− c (83 , 92 , 92 , 46 , 67 ,
117 , 109 , 114 , 104 , 87 ,
101 , 93 , 92 , 86 , 67 ,
105 , 119 , 116 , 102 , 116 ,
79 , 97 , 103 , 79 , 92 ,
57 , 92 , 104 , 77 , 100)

machines <− data . frame (machine , measurements )
boxplot ( measurements ˜ machine , data = machines ,

main = ”Boxplot o f measurements from d i f f e r e n t machines” )

# Bayesian methods
machines %>%

group by(machine) %>%
mutate (

ybar = mean( measurements )
) −> machines
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msw <− sum( ( machines$measurements − machines$ybar ) ˆ2)
y . df <− 24

prec <− rchisq (10000 , y . df )/y . df/msw
hist (1/prec ,

main = ” po s t e r i o r o f sigmaˆ2” ,
xlab = expression ( sigma ˆ2) )

v <− rchisq (10000 , y . df )/y . df
theta . i <− matrix (0 , 10000 , 6)
y . bars <− unique ( machines$ybar )

for ( i in 1 : 6 ) {
theta . i [ , i ] = y . bars [ i ] + sqrt (msw/v/5)∗rnorm(10000)

}
boxplot ( theta . i ,

main = ”marginal p o s t e r i o r s f o r mu vecto r ” ,
xlab = expression (mu)

)

# Frequen t i s t methods

machines . aov <− aov ( measurements ˜ machine , data = machines )
summary( machines . aov )
tapply ( machines$measurements , machines$machine , mean)
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