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Abstract

Answer questions 5, 7, 17, 22 from Bayesian Data Analysis and also find Jeffrey’s
Prior for X |0 ~ Negative Binomial random variable where 6 is the probability of
success.

1 Q5

Posterior distribution is a compromise between prior information and data. Let y be the
number of heads in n spins of the coin whose probability is 6.

1.1 part a.

If your prior distribution for € is uniform on the range [0, 1] derive your prior predictive
distribution for y for each £ =0,1,...,n.
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We used the fact that fol 0%(1 — 6)"~*df is the kernel of a Beta distribution with
a=k+land f=n—k+1.

1.2 part b.

Suppose you assign a Beta(a, 5) prior distribution for # and then you observe y heads
out of n spins. Show algebraically that your posterior mean of 6 always lies between the

prior mean ﬁ and the observed relative frequency of heads £.



The posterior can be calculated as
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This posterior is equal to Beta(y+a, n—y+). The posterior mean for this distribution
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In order to show that ai:j‘_ 5 Is in between £ and oanLB’ we can show that the posterior

mean is a convex combination between the prior and sample means. If we consider the
weight between the means to be ~, we can calculate:
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The last equality shows that v is between [0, 1], therefore the posterior mean is in
between the sample mean and the prior mean.

1.3 part c.

Show that if the prior distribution on 6 is uniform, the posterior variance of 6 is always
less than the prior variance.

Let’s take the standard uniform distribution to start U(0,1). It is known the the
variance of the standard uniform distribution is %(b— a)?, so the variance of the standard
uniform is .

We showed in part (a) that the posterior distribution with a uniform prior will be
Beta(k + 1,n — k + 1). This gives us a posterior variance of
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The smallest possible n we can have is n = 1. We see that the first two terms in this
quantity sum to 1, so at most, both of these values can be % and their product would be
}l. The last term in this quantity cannot be bigger than % since n > 0. Therefore, the

posterior variance will always be less than or equal to %

1.4 part d.

Give an example of a Beta(«, ) prior distribution and data y,n in which the posterior
variance of 6 is higher than the prior variance.



After playing around with the formula for the variance of a beta distribution in R,
the following combination of n = 2, y = 2, prior « = 1 and prior § = 10, we get the
prior variance to be a~ .00688 (variance of a Beta(1,10) distribution) and the posterior
variance to be .0126 (variance of a Beta(3,10) distribution).

2 Q7

Let’s investigate noninformative prior densities.

2.1 part a.

For the binomial likelihood y ~ Bin(n, ) show that p(#) oc 671 (1 — §)~! is the uniform
prior distribution for the natural parameter of the exponential family.

We note here that the binomial distribution can be reparameterized in terms of the
natural parameter 7:
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So our natural parameter is log%. If we use a univariate transformation, we get the
following pdf for # in terms of the uniform distribution of 7:
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2.2 part b.

Show that if y = 0 or n, the resulting posterior distribution is improper.

If y = 0, then the posterior distribution that we obtained above will be p(f|y)
6=1(1 — 0)"L. Notice that when 6 is small, this integral will not converge since there is
an infinite integral near 6 = 0.

If y = n, then the posterior distribution will be p(f|y) o< 6”7 1(1 — )~! and we run
into a similar infinite integral when 6 is large, around 6 = 1.

3 Q17

Unlike the central posterior interval, the highest posterior interval is not invariant to
transformation. For example, suppose that given o2 the quantity nv/o? is distributed as
X2 and that ¢ has the improper noninformative prior density p(c) < o=, 0 > 0



3.1 part a.

Prove that the corresponding prior density for o2 is p(0?) oc o2

Let’s define v = 02 and note that o = y/v. Now we can use a univariate transforma-
tion:
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3.2 part b.

Show that the 95% highest posterior density region for o2 is not the same as the region
obtained by squaring the endpoints of a posterior interval for o

First we need to get the posterior for p(c|data) and p(o?|data). Recognizing that
L )|o? ~ x2, we can calculate the posterior probaiblities as:
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Now let’s suppose that we have (a, b) is the 95% highest density interval for p(o?|data).

If the proposition is true, then we have (v/a,v/b) as the 95% highest density interval for
p(o|data) as well.

For p(o|data), we get the following relation for the densities as a and b.

—1/2-n/2 “NRUN\ _p-1/2-n/2 —nv
a exp <_2a ) b exp (_Zb

, 1 n nv 1 n nv
or equivalently 573 logla) — — = —= — = ] log(b) — —

For p(o?|data), we get the following relation for the densities a and b.
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If we solve for a in terms of b and substitute it back in, we get a = b. This is not
possible since this interval is supposed to be the 95% highest posterior interval. Therefore,
the highest posterior density of o2 cannot be just the square of the interval of o.



4 Q22

A study is performed to estimate the effect of a simple training program on free throws.

A random sample of 100 college students is recruited into the study. Each student first

shootes 100 free-throws to establish a baseline success probability. Each student then

takes 50 practice shots each day for a month. At the end of that time, he or she take 100

shots for a final measurement. Let 6 be the avearge improvement in success probability.
Give three prior distributions for #, explaining each in a sentence.

A noninformative prior It is known for the Binomial distribution parameter p that
a noninformative prior would be Jeffrey’s Prior Beta(1/2,1/2). This distribution is es-
sentially a bell curve limited to and centered on the unit interval. We can apply similar
logic to 6 where we want a bell curve limited between the beforehand success probability
m with 1 — 7 as an upper bound since we cannot have an overall success probability that
is greater than 1. Our noninformative prior would be a Beta distribution centered at the
midpoint of 7 and 1 — 7.

A subjective prior based on your best knowledge A subjective prior might be
calculated from past knowledge about this training program, for example, that most
students on average improved 10% with a standard deviation of 2%.

A weakly informative prior A weakly informative prior could be based on our sub-
jective prior. For example, if we think that the average improvement rate that we have
seen in the past is 10% with a standard deviation of 2%, a weakly informative prior might
increase the standard deviation so that there is more uncertainty in the prior.

5 Additional Question about Negative Binomial Dis-
tribution

If X|0 ~ Negative Binomial with parameters n, where 6 is the probability of success,
find Jeffrey’s Prior for 6.

The first thing we need to find is the Fisher information about 8 given in the data.
Parameterizing the negative binomial as follows:
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We get the following for I(6):
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Note that we made use of the fact that in this parameterization, the negative binomial
distribution has Ey[X] = "2

Jeffrey’s prior will be proportional to 7(6)'/2. In that case, we have that Jeffrey’s
prior of the Negative Binomial distribution will be oc #~'9~'/2. This is similar to a beta
distribution, but since the beta requires that «, 8 > 0, it is not exactly a beta distribution.

We can contrast this with Jeffrey’s prior for the binomial distribution which was

oc 0~1/2(1 — §)~1/2. This is a proper Beta(1/2,1/2) distribution.



